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Numerical Simulation of Fully Developed Flow and Heat TranSfer
Characteristics in a Curved Tube with Pulsating Pressure Gradient

Young-Ryoul Back,* Jae-Heon Lee,** Byung-Ha Kang*** and Myung-Do Oh****
(Received September 18. 1993)

Characteristics of fluid flow and convective heat transfer of a pulsating flow in a curved tube
have been investigated numerically. The tube wall is assumed to be maintained at a uniform

temperature peripherally in a fully developed pulsating flow region. The temperature and flow
distributions over a cross-section of a curved tube with the associated velocity field need to be

studied in detail. This problem is of particular interest in the design of Stirling engine heat

exchangers and in understanding the blood flow in the aorta. The time-dependent, elliptic
governing equations are solved, employing finite volume technique. The periodic steady state

results are obtained for various governing dimensionless parameters, such as Womersley

number, pulsation amplitude ratio, curvature ratio and Reynolds number. The numerical results
indicate that the phase difference between the pressure gradient and averaged axial velocity

increases gradually up to 7[/2 as Womersley number increases. However, this phase difference
is almost independent of the amplitude ratio of pulsation. It is also found that the secondary
flow patterns are strongly affected by the curvature ratio and Reynolds number. These, in turn,

give a strong influence on the convective heat transfer from the pipe wall to the pulsating flow.
The results obtained lead to a better understanding of the underlying physical process and also

provide input that may be used to design the relevant system. The numerical approach is
discussed in detail, and the aspects that must be included for an accurate simulation are

discussed.
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Nomenclature

A : Cross-section area

a : Tube radius

Cp : Specific heat
k : Thermal conductivity

K : Amplitude ratio of pulsation
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Nu : Local Nusselt number

Nu s : Peripherally averaged Nusselt number

Nu t-s : Phase and peripherally averaged Nusselt
number in a periodic cycle

n : Dimensionless temperature

P : Pressure
Pr : Prandtl number
Ro : Curvature radius
r : Radial Coordinate

Re : Reynolds number
S : Surface area of tube
T : Physical temperature
t : Time
U : Circumferential velocity
V : Radial velocity
W : Axial velocity

W s : Cross-section averaged axial velocity
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Greek characters
a : Thermal diffusivity

/3 : Womersley number

o : Curvature

1> : Axial coordinate
,1 : Phase angle

t1 : Viscosity
e : Circumferential coordinate

p : Density
r : Dimensionless time
)) : Dynamic viscosity

(J) : Pulsation frequency

Superscripts
* :Dimensional properties

: Average value

Subscripts
s : Peripherally averaged
f - s : Time and peripherally averaged

sf : Value at non-pulsating steady state

1. Introduction

A large number of practical and fundamental

situations involve fluid flow and convection heat
transfer associated with a pulsating flow in a

curved, heated tube. Such circumstances arise

when pulsating pressure gradient is imposed on a
flow in a curved, heated tube. The secondary flow

occurs in a curved tube by the centrifugal force

while this phenomenon is not seen in the straight
tube. The secondary flow created by centrifugal

force in a curved tube may enhance the convective

heat transfer at the tube wall than that in the

straight tube even though the pressure drop of the
flow is increased. Therefore, to provide the opti­

mum condition in the relevant systems with pul­
sating flow, the physical phenomena must be
investigated for various parameters of the proces­

ses. The effect of pulsation frequency, pulsation
amplitude, and curvature ratio on flow patterns

and heat transfer rate are of particular importance
in the design of Stirling engine heat exchangers

and in understanding the blood flow in the

aorta( 1990).
Considerable work has been done on the pul­

sating flow in a curved tube by several investin-

gators. Dean(l927) carried out a pioneering study

analytically on flow characteristics in a curved

tube. Hamakiotes and Berger(l990) studied
numerically flow profile in the blood vessel, on

fully developed region of periodic mass flow

through a curved tube. Lyne(l970) predicted the
characteristics of pure oscillating flow in the

range of low frequency by the theoretical method.

He reported the occurrence of an additional pair
of secondary flow in the invicid core, which

differs from Dean type vorticities. He postulated

that this secondary flow is caused by shear action.

Not much attention has been given to the heat

transfer characteristics of pulsating flow in a

curved tube. Zapryanov and Christov(l979) have

obtained a numerical solution on the flow and the

thermal field, which are fully developed, in a
curved tube. However, these results are obtained

by neglecting the time dependency. Simon and

Chang( 1977) investigated analytically characteris­
tics of heat transfer in a curved tube with pulsa­

ting flow. They reported that the time averaged

Nusselt number in a curved tube with pulsating is

larger than that in a straight pipe with pulsating.
Rabadi et al. (1982, 1980) studied numerically

characteristics of flow and heat transfer in a

curved tube, maintained at peripherally uniform

temperature. They found that the time and peri­
pheral average Nusselt number increases as

pulsating frequency or Prandtl number increases.

However, most of studies were limited to the
small curvature of curved tube or low pulsating

frequency. The aim of the present study is to

investigate heat transfer characteristics in a curved

tube with pulsation for various parameters such
as high Womersley number and large curvature

ratio.
The present study is directed at a numerical

simulation on convective heat transfer characteris­
tics of a pulsating flow in a curved tube. The tube

is assumed to be maintained at a uniform tempe
rature peripherally in a fully developed pulsation

flow region. The time-dependent, two­
dimensional, elliptic governing equations are

solved, employing finite volume technique. The
effect of various dimensionless parameters such as

pulsating frequency, amplitude of pulsation, cur-
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Momentum equations

Continuity equation

(I)n

components to deal with and all momentum
equations are required.

The thermal boundary conditions chosen in the
present study assume that the wall temperature, T
w varies linearly along the axial direction but is
uniform peripherally and constant with time. For
above thermal boundary condition, the axial
directional gradient of the flu id temperature, 0T /
o¢ is constant at regime except the entrance
region. That is, temperature field is fully deve­
loped and the distribution of the dimensionless
temperature, "n" defined as Eq. (I) is same
regardless of the axial position except the
entrance region.

l~(rV)+~oU+EF=O (2)
r or r oe

Tw-T
a(oT!O¢) Ro

The coordinate system used in the present study
is toroidal coordinate, in which a point inside the
tube could be specified by the three orthogonal

coordinates, e, rand ¢' and the corresponding
velocity components would be U, V and W,
respectively. The following assumptions are
introduced in the present study.

/. All the properties of fluid are constant.
2. The flow and temperature field are fully

developed
3. The flow is incompressible and laminar.
4. The pitch effect oC a curved tube is ignored.
The governing equations simplified by the

above assumptions are expressed as follows;

Fig. 1 Physical model and toroidal coordinate sys­
tem for a curved pipe

vature ratio and Reynolds number on the flow
and thermal field and the corresponding heat
transfer rate from the heated wall to the pulsating
flow are investigated in detail. The results
obtained lead to a better understanding of the
underlying physical process and are important in
the design of the relevant systems.

The physical model and coordinate system
considered are shown in Fig. /. The tube radius
and curvature radius of a curved tube are "a" and
"Ro," respectively. The flow in a curved tube is
assumed to be periodically developed by the
periodic axial pressure gradient with time.
Accordingly, the velocity distributions at any
cross section are same regardless of the axial
direction position but vary with time. Tabolt and
Gong( 1983) have confirmed experimentally that a
periodic flow entering a curved tube become fully
developed, in the sense that it becomes periodic in
time at any cross-section, and indenpendent of
axial position at some downstream position de­
pending on curvature ratio, frequency parameter
and Reynolds number. Hamakiotes & Berger
(1990) compared the numerical results to be
computed from the assumption of laminar flow
with Tabolt & Gong's(l983) experimental data.
He confirmed that the flow patterns for Re=500
are in very good qualitative and quantitative
agreement with experimental data. From this
physical consideration, we assumed that flow in a
curved tube is laminar. The present problem,
therefore is a two-dimensional one treating only
this fully developed region. Despite of two dimen­
sionality of the problem, there are three velocity

2. Physical Model and Analysis
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The accurate initial conditions are required in

the analysis of unsteady problems. Since the
pulsating flow considered in this study is steady
periodic flow, the solution of nonpulsating,

steady state is used as the initial condition in the
present numerical approach to reduce the compu­

tation time to reach the steady periodic state.

diffusivity and Re is Reynolds number. Reynolds

number is computed by referring the cross section
average velocity Ws, * resulting from the steady

pressure gradient, (apla¢)s, given as the input
condition. Therefore, if the steady component of

the axial pressure gradient, (aPI8¢)s, is given as
input condition for the steady state, the Reynolds

number is obtained from the numerical calcula­
tion for the given curvature ratio. Later, the

discussions will be performed for Reynolds num­

ber instead of the axial pressure gradient, (apI
a¢) s' used as input condition.

Square of Womersley number, (32 is the ratio of

the characteristic time, a2I v to the characteristic

oscillating time, II w. This parameter also be

interpretted as the ratio of the tube radius "a" to

the Stokes layer thickness (v I W)Y2 Accordingly,

we use a2I v as the characteristic time scale for
solving numerically the present problem. In case

of Womersley number, (3=0, the pulsation fre­

quency is equal to "0," it means that the pulsation

period is infinite. Womersley number, (3 and

pulsation amplitude, K play an important role in

heat and mass transfer in pulsating flow field. The
pulsation amplitude, K is the ratio of the alter­

nating to the steady component of the axial

pressure gradient.
The boundary conditions In terms of dimen­

sionless quantities were obtained from the physi­

cal boundary conditions. The resulting dimen­

sionless boundary conditions are expressed as
follow;

_~ au +E( -cose av + sine av
r 2 ae ar r ae

- us~ne) +E2Fcose} (4)

.B2aw + v aw +Jl aw +EFWar 8r r 8e

=-E ap +{l~(raw)+~ azw
a¢ r 8r ar r 2 ae2

-E2 W+E( -cose aw
ar

+ sine aw)} (5)
r ae

Energy equation

(32~+ V~+Jl~
8r ar r ae

=EW+_l_{l~(r~) +~ a
2
n

Pr r ar ar r2 ae2

+ E( sine ~-cose~)} (6)
r ae ar

where, E and Fare;

E=o/(l-orcose), F=Usine- vcose
In Eq. (5), the axial pressure gradient, which is

the driving force of main flow, is expressed as

follows;

This means that the driving force is a
sinusoidally varying axial pressure gradient with

time imposed on a steady component(aPIa¢) s,'
In above Eq. (7), "K" is the ratio of the maximum
amplitude of time varying component to the

steady component. A very small value of pulsa­

tion amplitude, K means quasi-steday state. The

dimensionless variables are defined as below.

r* U* V*
r=a' r=wt, U= (vi a)' V= (vi a)'

W*
W= (vi a)'

P*d k vP=--2-' a=--, Pr=-,
pv PCp a

v=l!:..., 0= Ra , (3=a(wlv),1/2
p 0

Re= aWs,*. (8)
v

In above equations, the starred marks indicate
the dimensional variables, w is the angular velo

city of pulsation, fl is viscosity, v is the dynamic

viscosity, Pr is Prandtl number, a is the thermal

u= av = aw =~=O
ae ae ae

at the e= 0 and e= 7f

U= V= W=n=O
at the wall

au =av =aw=~=o
ar ar ar ar

at r=O (9)
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Table 1 Run numbers of present study

3. Numerical Scheme

In all cases considered here, the numerical
calculations were carried out for a half of tube
cross··section, because the flow and temperature

field are fully developed and the geometry of
present model is symmetric. The discretization is
based on the finite volume method of Patan­
kar(l980). The non-uniform staggered 15xl5 grid

system was used to discretize the governing equa­
tions. Because the flow is unsteady during a cycle,
each cycle was subdivided into 200 time steps. In
each time step, the converged solution is obtained
when the relative error of dependent variables are
less than 10-4 and local mass flux residual is
reached to 10-5 during an iterative calculation.
The dfects of the chosen numerical parameters,
such as grid size, time step and convergence
criterion are also studied to ensure a negligible
effect on the computed steady periodic state
results. The effect of grid qependency were stud­
ied. Increasing the mesh point to 15x19 changes
the n:sult only very slightly(less than 2% for axial
velocity). The number of iteration depends on
Wornersley number, pulsating amplitude,
Reynolds number and curvature ratio. The un­
derrelaxation method was employed in present
calculation to achieve the numerical stability of

solution. The underrelaxation factors for U, V, W,
P and Tare 0.5, 0.5, 0.8, 0.8 and 0.8, respectively.

A major difficulty in the numerical solution of
the present problem lies in facts that the initial
condition are not known a priori, which necces­
sitates an interative solution on the entire cycle.
The (:stabilishment of inaccurate initial condition
needs 10-20 cycles to gain the steady periodic
state solution in the range of present calculation.
It was found that the iterative number of cylcle
required for the periodic solution is increased as
Womersley number is increased, while it is in­
dependent of curvature ratio, amplitude ratio and
Reynolds number.

4. Numerical Results and Discussion

Fluid flow and convective heat transfer of the

Re (; K (3 (oP/o¢) st

500 0.01 1.5 2 -5.92x IQ3

500 0.01 1.5 4 -5.92x 103

500 0.01 1.5 6 -5.92x 103

*500 0.01 1.5 8 -5.92x 103

500 0.01 1.5 10 -5.92x 103

500 om 1.5 12 -5.92xlQ3

500 0.01 1.5 14 -5.92x 103

500 0.01 0.5 8 -5.92xlQ3

500 0.01 2.5 8 -5.92xlQ3

500 0.01 3.5 8 -5.92xI03

500 0.01 4.5 8 -5.92 x 103

500 0.05 1.5 8 -7.63 X 103

500 0.Q75 1.5 8 -8.17x 103

500 0.1 1.5 8 - 8.58 x 1Q3
---

100 0.01 1.5 8 -8.19xI02

300 0.01 1.5 8 -3.lOx IQ3

800 0.01 1.5 8 -1.09x 104

1000 0.01 1.5 8 -1.48 X 104

*Reference condition

pulsation flow on a curved tube have been inves­
tigated by numerical simulation for various
parameters. The reference governing parameters

were selected as (3=0.8, K= 1.5,0'0=0.01 and Re
== 500 for the convenience of discussion. The
working fluid used in the present calculation was
air (Pr=0.7). On the basis of above reference
condition, the numerical calculations were carried
out for 18 cases. A complete list of all the parame­
ters for 18 cases calculated in present study is
given in Table 1. All the results obtained in
numerical calculation will be discussed, compar­
ing with reference condition.

4.1 Flow characteristics
Cross-section average of axial velocity is

defined, in order to observe the time variationof
axial velocity during a cycle, as follows;
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(10)

Figure 2 shows the computed cross-section

average axial velocity defined in Eq. (9) during a

cycle and the axial driving pressure gradient with
time(phase angle), for ;3=2.0, 8.0 and 14.0, at K
= 1.5, Re=500 and 0=0.01. In this figure, it is
observed that the time variation of axial velocity
during a cycle is significant with small Womers­

ley number(;3=2.0), while it becomes meager
with the increased Womersley number. And it is

also seen from this figure that the phase difference
between pressure gradient and axial velocity

becomes larger as the Womersley number is in­

creased. This phase difference is about Jr/2 for the

case of ;3 = 14. This result indicates that the
pressure gradient leads Jr/2 than the axial velocity
for the high Womersley number. This result is

caused by the increase of time variation rate of

pressure gradient with the increased Womersley
number. The similar qualitative tendency is also

observed from the results of Berger( 1990), who
studied pulsating flow with the sinusoidal mass­

flow rate in a curved tube. In case of ;3=2.0, it
can be seen that the axial velocity changes from

the natural flow into the reverse flow at phase

angle, A= Jr. This phenomenon is because the

axial driving pressure gradient changes from the
favorite pressure gradient into the unfavorite

pressure gradient at A= Jr. For high frequency

such as 13=8.0 or 14.0, the reverse flow could not
be observed due to the reduction of amplitude

ratio of axial velocity. The reverse flow appeared

at A=Jr in case of ;3=2.0, continues until phase

angle, A= 3Jr/2 and axial flow is changed from
the reverse flow into natural flow at A= 3Jr/2.

Figures 3 and 4 show the distribution of instan­

taneous axial velocity along the symmetric line

during a cycle at K = 1.5, 0=0.01 and Re=500
for 13=2.0 and ;3=8.0, respectively. We can
predict that time gradient of physical properties

during a cycle are steepest at the typical phase

angles, such as A=O, A=Jr/2, A=Jr and A=3Jr/2.
Accordingly, all the results will be discussed for

these phase angles. As shown in Fig. 3, the axial
velocity has the largest value in the vicinity of the

outer wall at phase angle A=0 by driving the

largest axial pressure gradient. The steep gradient
of axial velocity in this region is desirable for

increasing the convective heat transfer as will be
seen later. The distribution of axial velocity at A
=Jr/2 is similar to that at A=O however, the
quantitative values of axial velocity are smaller

than those at A=0. The axial velocity distribu-

20ll0,....-----r----,....----..,...----,

-----"'=0
1500 ---<>-A.=lt!Z

--"'=1t
1000

~

500

o

-500 !>O------,,0"'.5------;1"'.0,------,1.<.,.,---------,,'Z.O

x

Fig. 3 Dimensionless axial velocity along the hori­
zontal diameter at Re=5oo, K = 1.5, ;3=2.0
and 0=0.01

1Z00 ,-----r---,----,-----,

----A.=3lt!Z

~600
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x
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Fig. 4 Dimensionless axial velocity along the hori­
zontal diameter at Re = 500, K = 1.5 and 13 =

8.0,0=0.01

1000

0.0
--13=2
-----13=8
--13=14

-200

600w~'~r~~~=~'~~ l.OXlO'
I~' 400 1= 50xlO' '!

200 . %

o

-400 L-__~____'____-L_____' -5.0xlO'
o Tt/2 1t 3Tt/2 21t

Phase angle. '"

1000 _..----.---...,------.--~l.5xlO'

300

Fig. 2 Dimensionless cross section averaged axial
velocity and pressure gradient during a cycle
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tions at tl = 7f and tl = 37f/2 are very different from
those at tl =0 and tl = 7f/2. This is due to a
decrease of axial driving pressure gradient at tl =
7f and tl=37f/2. In particular, the reverse flow
app4~ars at tl = 7f by means of driving the largest
unfavorite pressure gradient. From this result, we
can predict that the axial reverse flow appears in
all the region at tl=7f for low Womersley number.

In Fig. 4, the axial velocity distribution is
qualitativley similar to that of tl =0 and tl = 7f/2

in Fig. 3. However, the reverse flow is not obser­
ved in Fig. 4 in this case. This is due to a decrease
of axial velocity amplitude ratio with the in­
creased Womersley number. From this result, we
can see that the amplitude ratio and axial velocity
during a cycle decreases as Womersley number
incfl~ases.

To visualize the secondary flow originated by
centrifugal force, the distributions of streamlines
and velocity vectors for (3 = 2.0 and (3 = 8.0 are
shown in Figs. 5 and 6 respectively. In Fig. 5, as
the phase angle varies, the flow field is differently
distributed and the strength of secondary flow is
the most intense at tl =0 and the smallest at tl = 7f.

This is, as illustrated in Figs. 3 and 4 due to the
time variation of axial velocity. In Fig. 6, it is
found that the time variation of secondary flow
during a cycle is smaller than that in Fig. 5. From
above results, we can predict that time variation
of temperature is meager for high Womersley
number and is intense for low Womersley num­
ber.

The time variation of cross-section averaged
axial velocity at 0'=0.01, Re = 500 and (3=8.0 is
shown for various pulsation amplitude ratio K in
Fig. 7. It is observed that the axial velocity during
a cycle is periodic and the phase difference
between the driving axial pressure gradient and
axial velocity is about 7f/2, regardless of ampli­
tude ratio K. This phenomenon is because the
Womersley number is given at 8.0 for the cases
considered. From this result, it is induced that the
phase difference between axial velocity and axial
driving pressure gradient is negligibly affected by
the amplitude ratio K.

Figure 8 shows the distribution of instantane­
ous axial velocity along the symmetric line at a
given amplitude ratio K = 3.5 for the several

:-.... ~:: ~ ~

.·:::::;;~~i;~~~~~:.'.
(a) A=O

A
(b) A=7l"/2

fA

&
A'~~O~

A'~?:i~{;a
(c) A=7l"

A~
Streamlines Velocity vectors

Fig. 5 The distributions of streamlines and velocity
vectors at Re=50, K=I.5, {3=2.0 and 0=0.
01

Streamlines Velocity vectors

Fig. 6 The distributions of streamlines and velocity
vectors at Re=500, K= 1.5, {3=8.0 and 8=
0.01
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(b) )..=;r/2

&
(a)

-21t

__K=3.5

-..-K:4,5

31t12It1tI2

900 r---.,------,.----r----,

700

300

100 0

Phase angle. A

Fig. 7 Dimensionless cross section averaged axial
velocity for various amplitude ratio during a
cycle at Re=500, fi=8.0 and 0=0.01

(c) )..=;r

Fig. 9 The distributions of streamlines and velocity
vectors Re=500, K=1.5, fi=8.0 and 0=0.
075

Velocity vectors

(d) )..=3;r/2

Streamlines

time and the strength of secondary flow is larger
than that of reference condition for all phase

angles. The strong secondary flow may lead to

enhance the convective heat transfer, to be discu­
ssed later in detail. And the center of secondary

flow moves to inner wall by the increase of
centrifugal force.

4.2 Temperature field
Figures 10 and II show the typical temperature

distributions obtained in the present study. In

Fig. 10, it is found that temeperature gradient

near the outer wall at ;\ = 0 and A= ;r/2 is steep by
strong centrifugal force. Therefore, the tempera­

ture field at this phase angle is dominated by
convection. While the temperature gradient at A=
Jr is meager in the all region, particularly the

negative temperature values are observed near the
inner wall. The axial reverse flow occurs near to

A=;r in case of the low Womersley number(;5'=
2.0) as illustrated in Fig. 2. This reverse flow by

the unfavorite axial pressure gradient is respon­
sible for the existence of fluid heated higher than
the wall temperature. In the reverse flow region,

this phenomenon appears similarly at A= 3Jr/2.

1400,........------....---r----....
__..._'-=0

1200

1000

800

2:600

phase angles. As shown in Fig. 8, the time varia­
tion of axial velocity is more substantial than that

of reference condition seen in Fig. 4. In particu­
lar, the weak reverse flow appears in the region

near the inner wall and the natural flow appears

in the region of invicid core and in the region

near the outer wall at phase angle A= 3Jr/2 with
minimum axial velocity. It can be predicted that
the convective heat transfer could be reduced at

the phase angle with a reverse flow. It is observed
from the present result that the strength of this
reverse flow becomes larger as the amplitude ratio

K is increased. The secondary flow is created by
the combination of axial velocity and curvature of
the curved tube.

When the curvature ratio[ <>] is 0.075 and other
parameters are equal to reference condition, the
distributions of streamlines and velocity vectors at
four phase angles are shown in Fig. 9. In this

figure, the secondary flow varies strongly with

400

200
O'f"'""""__~

-200 k-o----,o;lc.S,...---,J.I.LnO-----;I.!.;.S,...------.,z'i'.o

x

Fig. 8 Dimensionless axial velocity along the hori­
zontal diameter at Re=500, K=3.5, fi=8.0
and 0=0.01
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~~
(a) ).=0 (b) ).=Jr/2

~~. ~.3(/~

.~jlf ~

15 r----,----,-----,-----,

10

Ii 5

-'-13=2
o -<>-13=8

---13=14

Fig. 10 The distri butions of isotherms at Re = 500, K
= 1.5, /3=2.0 and 3=0.01

Fig. 11 The distributions of isotherm at Re = 500, K
= 1.5, /3=8.0 and 3=0.01

AdA
(a) ).=0 (b) ).=Jr/2

r1I A
In Fig. II, the isotherms are densly distributed at

all the phase angle in the vicinity of the outer

wall, and coarsely near the inner wall. This is due

to a centrifugal force drived from inner wall into

outer wall. Accordingly, one can see that tempera­

ture field at all the phase angles during a cycle are

strongly dominated by high Womersley number

due to convection effect.

4.3 Characteristics of convective heat
transfer

Toi investigate characteristics of convective

heat transfer in pulsating flow, the local Nusselt

number, Nu, peripheral averaged Nusselt number

"Nu·s at any phase, and the phase and peripheral

averaged Nusselt number Nu t-s are defined as
follow.

.5 '--__-'- .1.-__--'-__--1

o 7<12 II 37<12 211

Phase angle, A.

Fig. 12 The peripherally averaged Nusselt number
during a cycle at Re=5oo, K = 1.5 and 3=0.
01

Figure 12 illustrates the peripheral averaged

Nusselt number Nu s along the phase angle for /3

=2.0, /3==8.0 and /3= 14.0. As shown in this

figure, Nu's varies significantly during a cycle in

case of /3=2.0. In this case, the variation trend of

Nu s along the phase is similar to that of axial

velocity shown in Fig. 2. The negative value of

7Vu s is observed in the range of). = Jr and). =3Jr1
2, which is due to the reverse flow. When the

Womersley number is 8 or 12, the time variation

of Nu during a cycle is relatively flat along the

phase angle. This is because the flow distribution

along the phase angle is not varied strongly

dunng a cycle.
Figures 13 and 14 show the distributions of

local Nusselt number Nu along the periphery for

four phase angles at /3 == 2.0 and /3 = 8.0,

respectively. In these figures, "0" and" Jr" denote

the inner and outer wall, respectively .. In Fig. 13,

the time variation of Nu in the vicinity of the

outer wall is very large because the thermal field

near the outer wall varies substantially with time.

The value of Nu at ). =0 and ). = Jr12 is much
larger in the outer wall, compared with that in the

inner wall, due to the counter clockwise secon­

dary flow. The distribution of Nu at ).=Jr and).

=3Jr/2 is flat and the value is nearly "0". This is

due to the reduction of convective effect at ). = Jr

and )'=3JrI2. As shown in Fig. 14 for high

Womersley number, it is clear that tht~ time varia­

tion of Nu is small because the secondary flow

varies little during a cycle. The heat transfer

(12)

( 13)

(II)

(d) )'=3Jr/2

(d) )'=3Jr/2

(c) ).=Jr

(c) ).=Jr

2 [on]Nu=~ --
nb or r~J

-- 11Nus=- Nu dS
Jr s

-- 1 (Z1r_
Nu t-s=27r)o Nus d)'
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along pipe surface at Re=500, K = 1.5,13=2.
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ber as a function of Womersley number at Re
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Fig. 14 The distributions of local Nusselt number

along pipe surface at Re = 500, K= 1.5,13=2.
o and 0=0.01

characteristics of these cases are strongly affected

by the convection.
The Womersley number(,B), pulsation ampli­

tude(K), curvature ratio(8) and Reynolds num­
ber(Re) play important roles in pulsating flow in

a curved tube. Figures 15 and 16 show the behav­
ior of the time and peripheral averaged Nusselt

number Nu t-s for various dimensionless parame­
ters. It is obvious from Fig 15. When Womersley
number is small, the time and peripheral averaged

Nusselt number Nu t-s is smaller than that of
high Womersley number, and increases
asymtotically up to 7.69 with increasing Womers­
ley number. This is because, for low Womersley

number the time variation of flow during a cycle
is stronger than that for high Womersley number,

in particular, the axial reverse flow appears in

case of /3=2.0, as illustrated in Fig. 2

The effect of curvature ratio on Nu t~s is
shown in Fig. 16 In this figure, the phase and
peripheral averaged Nusselt number is almost
increased linearly by means of augmentation of

centrifugal force. It is easily predicted that the
strength of secondary flow becomes much stron­
ger with the increase of curvature, and conse­
quently the convective heat transfer rate in a
curved tube is increased. When the curvature ratio
is increased from 0.0 I to 0.1 as 10 times, the

increment rate of Nu t~s is approximately 60%. It

was confirmed that the variation of time and

peripheral averaged Nusselt number as a function
of Reynolds number is nearly similar to that of

curvature ratio. That is, the time and peripheral

averaged Nusselt number increases with the
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increase of Reynolds number. The distribution of
Nu t-s (lLS a function of Reynolds number is
shown in Fig. 17, when curvature ratio(O'), ampli­
tude ratio(K) and Womersley number(p» are O.
01, 1.5 and 8.0, respectively. As shown in this
figure, 7VUt-s is increased almost linearly by an
increase of centrifugal force as Reynolds number
is increa5,ed. One can see from these gualitative
results that Nu t -s is strongly influenced by
means of centrifugal force, which is originated
curvature and axial flow(Reynolds number).

Figure 18 illustrates the variation of time and
peripheral averaged Nusselt number with ampli­
tude ratio. It is seen from this figure that Nu t-s
are not change much, regardless of a variation of
amplitude ratio. This is because flow characteris­
tics are not affected by amplitude ratio, when
Womerslt:y number is large(8.0). It is predicted,

11 r---,---,.--,.---,--.....,.----,

10

9

! 8

Iz 7 .

6
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4 ~--~---J.:-::_____,~-"..L,,--..L-----l
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Fig. 17 Tlime and peripherally averaged Nusselt num­
bt:r as a function of Reynolds number at K =
1.5, ;5'=8.0 and 0'=0.01
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Fig. 18 Time and peripherally averaged Nusselt num­
bt:r as a function of amplitude ratio at Re=
500, ;5'=8.0 and 0'=0.01

however, that a variation of time and peripheral
averaged Nusselt number becomes large in case of
small Womersley number.

5. Conclusions

Characteristrics of the pulsating flow and
convective heat transfer have been investigated
numerically in a curved tube maintained at uni­
form temperature peripherally for various param­
eters such as Womersley number, pulsation ampli­
tude, curvature ratio and Reynolds number. The
results are summerized as follows.

1. When Womersley number is greater than 8.
0, the phase difference between the axial driving
pressure gradient and the axial velocity is almost

;r/2 and is nearly independent of pulsation ampli­
tude.

2. In case of the low Womersley number, the
reverse flow appears in the range of k=;r and il =

3;r/2, and temporal variation of axial and secon­
dary flow is stronger than for high Womersley
number.

3. As Womersley number increases, the tempo­
ral and peripheral averaged Nusseh number
increases asymtotically up to 7.69.

4. The temporal variation of peripheral ave­
raged Nusselt number becomes meager' with the
increase of Womersley number.

5. It is found that the strength of secondary
flow and the temporal and peripheral averaged
Nusselt number is augmented with the increased
curvature and the increased Reynolds number.
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